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It has been known that certain magic metal clusters can mimic
chemistry of halogen elements (e.g., the icosahedral cluster Al
coined as “superhalogen®)aromatic molecules (e.g., square planar
cluster Al?7),2 or nonmetal anionic component in salts (e.g.,
icosahedron cluster F#~ in a metallic Zintl phasej.In particular,
highly stable clusters with large energy gapl(5 eV) between
the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) may be perceived as a
“superatom”, analogous to fullerenesddwith a large HOMG-
LUMO gapA = 1.57 eV} that tends to retain its structure integrity
and chemical identity in cluster-assembled solids.

Recently, a few highly stable (magic) gold-caged metal clusters
with large HOMO-LUMO gaps have been reported in the
literature. For example, the closed-shell icosahedral cluster W@ Au
was predicted by Pyykkand Runebefgto have a large HOM©
LUMO gap, based on the density functional theory (DFT) calcula-
tion. Later, experiments by Li et al. confirmed the existence of the
W@Au,» icosahedral cluster, which has a measured HGMO
LUMO gapA = 1.68 eV® This energy gap is probably only second
to that of the tetrahedral Agcluster, which has a measured gap
= 1.77 eV* To our knowledge, the tetrahedral Awluster perhaps
holds the record of having the largest HOMOUMO gap among
medium-sized 3D metal clusters. Note that for neutral Au clusters,
Gordon and co-workers recently showed that the 2D-to-3D transi-
tion may occur at Agl”

In this communication, we report a new series of isoelectronic
gold-caged metal clusters, M@Au(M = Zr, Hf), and anion
clusters, M@Ay~ (M = Sc, Y). DFT calculations show that these
gold-caged metal clusters have HOMOUMO gaps not only
greater than the icosahedral gold-caged metal cluster W@t
even appreciably larger than the tetrahedral clustgs.Adoreover,
the DFT calculations show that the neutral clusters M@AWM
= Sc, Y) exhibit an electron affinity (EA) not only higher than the
EA of “superhalogen” Al; but also even higher than a Cl atom
which has the highest elemental EA (3.61 eV).

We first performed an unbiased search for the global minimum
structure of the ZrAy, mixed cluster, using the basin-hopping global
optimization technique coupled with DFT meth®Bour randomly

Figure 1. The top view (top) and side view (below) of the calculaizgd
Zr@Au4 using the PBEPBE/SDBAu(2f) functional and basis set. The
Au—Au bond lengths vary between 2.713 and 2.84 A.

functionals, along with a larger Stuttgart/Dresden (SDD) ECP
valence basi§ augmented by two sets bfunctions (exponents:
1.425, 0.468) for Au. All calculations were performed using the
Gaussian03 prografi.The lowest-energy clusters Zr@ Auand
Hf@Au,4 exhibit similar geometries: 14 outer gold atoms form a
hollow cage withD,y symmetry, while the Zr and Hf atom is
enclosed in the gold cage. The four valence electrons of Zr (or Hf)
plus the 14 valence s electrons of Auesult in a total of 18
electrons, which is consistent with the 18-electron closed-shell
rule 3614 Further DFT calculation confirms that Zr@fuand
Hf@Auy4 are all closed-shell structures (Table 1), similar to the
icosahedral W@A4. However, there are still some notable
structural differences between M@4@and W@AU,. In particular,
the Aug4 cage has eight rhombuses and eight triangles (Figure 1).
The existence of a large number of rhombuses as a main structural
feature has been rarely seen in low-lying gold-cage clusters. In all
previously reported lowest-energy or low-lying gold-caged clusters,
such as the gold fullerene Agi® Aug,,'® or W@Au,,>8 the gold
atoms form raft triangles exclusively on the cage.

In Table 1, we list the calculated bond lengths, HOMQJMO
gaps, and frontier orbital configurations. For the;fAuage, the

constructed initial isomer structures (wherein three isomers having peripheral Au-Au bond length varies between 2.713 and 2.840 A,
the Zr located at the outer shell) were used and all end up to thewhich is slightly shorter than the AuAu bond length calculated
lowest-energy isomer (Figure 1 and Table S1) after a few tens of by using the local-density approximation (2.89 A) or generalized

basin-hopping moves. Low-lying isomers were reoptimized using
the BP86 functiondlwith the effective core potential (ECP) of the
LANL2DZ basis set (see Figure S1 Similar calculations were
carried for other isoelectronic clusters Hf@aAand M@Au,~ (M

= Sc, Y) (Tables S2S4). Next, harmonic vibrational frequencies

gradient approximation (2.97 AJ.In Table 1, we also list the
calculated peripheral AdAu bond length of W@Aw and Aw,,
using the same functionals and basis set. It is worthy to note that
the longest peripheral AuAu bond length (2.83 A) of Zr@Au

is less than the peripheral AtAu bond length (2.894 A) of

were calculated to affirm that the lowest-energy isomer does not W@Au;,, @ manifestation of slightly stronger relativistic effécts
show imaginary frequencies (Tables S5 and S6). Finally, to examinein the Au4 cage.
basis set and functional effects on the predicted lowest-energy Remarkably, as shown in Table 1 (boldfaced number), the

structures and their HOMOLUMO gaps, the Zr@Aw and
Sc@Au4~ were further optimized using both BP86 and PBE
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calculated HOMG-LUMO gaps of the W@Aw and Al clusters
are in good agreement with the experiments. These HGMAMO
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Table 1. Calculated Properties of Zr@Aui4 and SC@Au14~ versus W@AuU1z, Auyg, and Aliz~ (experimental results in parentheses)

property Zr@Au2 Sc@Auy, 2 W@Au,? Alg? Alyg= b
symmetry point group Dog Dog Ih Tq Ih
HOMO—LUMO gap (eV) 2.23/2.23 2.04/1.99 1.80/1.82 (1.68) 1.85/1.82 (1.77) 1.85/1.90 (1.4
Frontier orbital configuration d2(eY(a)X(by)° (by)(ar)2(e)(ay)° (t20)8(t29)8(hg)(hg)© (t2)8(t2)8(eY(t2)° (t20)8(t10)%(9u)3(hg)®
HOMO (eV) —5.81+-5.65 —2.49/-2.34 —5.53/-5.39 —5.87-5.71 —1.94/-1.91
Au—Au bond length (A)
shortest 2.719/2.713 2.719/2.715 2.894/2.890 2.679/2.679
longest 2.830/2.840 2.827/2.835 2.830/2.827
M-Au bond length (A)
shortest 2.822/2.803 2.763/2.745 2.752/2.749
longest 2.923/2.922 2.900/2.901
EA (eV) 4.13/3.97 3.38/3.35 (3.5®

aBP86/PBE (SDE-Au(2f)). " BP86/PBE (6-31G*)¢ Reference 69 Reference 4¢ Reference 1c¢.BP86/PBE (LANL2DZ).9 Reference 1d.

gap results suggest that the BP86 functional along with the ECP
of SDD+Au(2f) (or even the smaller LANL2DZ) basis set is quite
reliable in predicting energy gaps of gold clusters (for both clusters,
the error bar is less than 0.2 eV), particularly in predicting the
relative difference in the HOMGLUMO gap between two gold
clusters, for which the error bar appears to be even smaller than
0.2 eV.

Also shown in Table 1 and Table S6, the calculated HOMO
LUMO gaps of Zr@Auy, and Hf@Au4 are A ~ 2.23 and 2.05
eV, respectively. These values are appreciably larger than the
calculated HOMG-LUMO gapsA ~ 1.8 eV for W@Auy, andA
~ 1.85 eV for Auo. Because the HOMOGLUMO gap difference
between Zr@Aw and Al amounts to 0.38 eV, the measured
HOMO—-LUMO gap of Zr@Au, is also likely larger than the
measured gapA ~ 1.77 eV) of Ao Assuming the HOMG
LUMO gap difference between W@Adaiand Ao can be a guide,
we expect that the measured gap of Zr@Amay be even close
to 2 eV. In addition to the 18-electron rule, two other reasons for
the high stability and large HOMGLUMO gap of the Zr@Au,
are due to the relativistic effects and aurophilic attractigtirhese
two effects can be seen from a direct comparison of high-frequency
modes, core shell binding energy (Table S7), and HOMQUMO
gap of Zr@Ag, versus Zr@Aw, (Table S5). Indeed, most force
constants for the high-frequency modes are larger for Au than Ag,
due to the relativistic increase of the stretching force constants.

As noted in the above, the neutral;Acluster behaves like a
superhalogen because of its high EA value, which is very close to
the EA of a Br atom (Table S8). In Table 1, we also show the
calculated EA values<3.38 eV) and the measured one (3.57 eV)
of the icosahedral A}~ clusterl® which are in good agreement
with each other. As shown in Table 1 and Table S8, since the
calculated EA and vertical detachment energy (VDE) values of
M@Au,4~ (M = Sc, Y) are 0.50.75 eV higher than the calculated
EA and VDE values of Als~, it is very likely that the measured
EA and VDE of M@Au4 (M = Sc, Y) are greater than those of
Al137, as well. As such, the neutral clusters M@AM = Sc, Y)

are expected to have an EA not only higher than the superhalogen

Al 13, but possibly even higher than a Cl atom, which has the highest
(measured) elemental EA or VDE (3.61 eV; see Table188).

clusters M@Au, (M = Sc, Y) exhibit a calculated EA not only
higher than the calculated EA of the superhalogen icosahedial Al
cluster but also possibly even higher than a Cl atom, which has
the highest (measured) elemental EA or VDE.
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